Sparsey™: event recognition via deep hierarchical sparse distributed codes
نویسنده
چکیده
The visual cortex's hierarchical, multi-level organization is captured in many biologically inspired computational vision models, the general idea being that progressively larger scale (spatially/temporally) and more complex visual features are represented in progressively higher areas. However, most earlier models use localist representations (codes) in each representational field (which we equate with the cortical macrocolumn, "mac"), at each level. In localism, each represented feature/concept/event (hereinafter "item") is coded by a single unit. The model we describe, Sparsey, is hierarchical as well but crucially, it uses sparse distributed coding (SDC) in every mac in all levels. In SDC, each represented item is coded by a small subset of the mac's units. The SDCs of different items can overlap and the size of overlap between items can be used to represent their similarity. The difference between localism and SDC is crucial because SDC allows the two essential operations of associative memory, storing a new item and retrieving the best-matching stored item, to be done in fixed time for the life of the model. Since the model's core algorithm, which does both storage and retrieval (inference), makes a single pass over all macs on each time step, the overall model's storage/retrieval operation is also fixed-time, a criterion we consider essential for scalability to the huge ("Big Data") problems. A 2010 paper described a nonhierarchical version of this model in the context of purely spatial pattern processing. Here, we elaborate a fully hierarchical model (arbitrary numbers of levels and macs per level), describing novel model principles like progressive critical periods, dynamic modulation of principal cells' activation functions based on a mac-level familiarity measure, representation of multiple simultaneously active hypotheses, a novel method of time warp invariant recognition, and we report results showing learning/recognition of spatiotemporal patterns.
منابع مشابه
Superposed Episodic and Semantic Memory via Sparse Distributed Representation
The abilities to perceive, learn, and use generalities, similarities, classes, i.e., “semantic memory” (SM), is central to cognition. Machine learning (ML), neural network, and AI research has been primarily driven by tasks requiring such abilities. However, another central facet of cognition, the ability to rapidly form, often with a single occurrence, essentially permanent memories of experie...
متن کاملA Radically New Theory of how the Brain Represents and Computes with Probabilities
It is widely acknowledged that the brain i) implements probabilistic reasoning, and ii) represents information via population/distributed coding. Previous population-based probabilistic (PPC) theories share several fundamental properties: 1) continuous (graded) neurons; 2) all neurons formally participate in every code; 3) due to 1 and 2, decoding requires either graded synapses or rate coding;...
متن کاملLearning Hierarchical Representations for Video Analysis Using Deep Learning
With the exponential growth of the digital data, video content analysis (e.g., action, event recognition) has been drawing increasing attention from computer vision researchers. Effective modeling of the objects, scenes, and motions is critical for visual understanding. Recently there has been a growing interest in the bio-inspired deep learning models, which has shown impressive results in spe...
متن کاملHierarchical Matching Pursuit for Image Classification: Architecture and Fast Algorithms
Extracting good representations from images is essential for many computer vision tasks. In this paper, we propose hierarchical matching pursuit (HMP), which builds a feature hierarchy layer-by-layer using an efficient matching pursuit encoder. It includes three modules: batch (tree) orthogonal matching pursuit, spatial pyramid max pooling, and contrast normalization. We investigate the archite...
متن کاملTraffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014